Inorganic Laminar Semiconductors

G. Gonzalez, E. Benavente

Universidad de Chile, Universidad Tecnológica Metropolitana Center for the Development of Nanocience and Nanotechnology, CEDENNA

> IRELAC - EULA-NETCERMAT SEMINAR Brussels, February 28, 2013

INORGANIC SEMICONDCUTORS Crystal Structures

Ionic-Covalent Networks Inherent atomic distribution and symmetry Electronegativity, size, oxidation states of components

INORGANIC SEMICONDCUTORS Electronic Structure

INORGANIC SEMICONDCUTORS Physicochemical Properties

Electron and/or Hole Chemical Potential Energy of Valence and Conduction Band Band Gap – Separation of Hole/Electron Pair - Surface Area

Particle Size & Elecronic Structure

Nanoparticle Size & Spectroscopic Properties

Exciton, De Broglie wave

- NANO-SPECIES ARE INTRISICALLY INESTABLE OBJECTS
- MAJOR CONTRIBUTION IS SURFACE ENERGY
- NANOOBJECTS ARE ENERGETICALLY NON HOMOGENEOUS SPECIES

Nanoscience and nanotecnology: a revolution in natural sciences ?

Research of solids with sizes of the order of the nanometers Challenges to physical and chemical knowledge

Corroboration of theoretical predictions from the physics of solids A bridge between atoms - molecules and solids Window for knowledge on properties of thin films and catalysts

Great potential for multiple applications

. . .

NANOPARTICLE STABILIZATION

MOLECULAR CLUSTERS

$\Pi_4(CO)_{12}$	lr ₄ ((CC)) ₁₂	
------------------	-------------------	-----	------------------	--

Pb₅²⁻

 Nb_6Cl_{14}

OS₇(CO)₂₁

 $Au_{55}[P(C_4H_5)_3]_{12}Cl_6$

G. Schmid, A. Lehnert, Angew. Chem. Int. Ed. Engl. 1989, 28,

Behavior of Nanoparticles in Normal Chemical Environments

An special case

Layered solids – anisotropic nanomaterials

Best example Carbon derivatives

Stability of two dimensional nanoparticles

INORGANIC FULLERENES

INORGANIC FULLERENES

ReS₂

Coleman et al., J. Am. Chem. Soc. 124, 11580 (2002)

R. Tenne, Nature nanotech. 1, 102, 2006

MoS₂ **Graphene-like Nanosheets**

SEM

AFM

STM

Coleman et al., Science 331, 568 (2011)

Inorganic Semiconductor Single Layers

Single-layer MoS₂ transistors

Radisavljevic et al., Nature Nanotech., 2011

OUR APPROACH

Layered Solids Two phase systems: **Nano heterogeneity**

MoS₂-Based Organic-Inorganic Nanocomposites

Li/L[†] Electrical Lubricant Optical Tubular Redoxpotentialsconductivity properties propertiesnanostructures

Electrical and Electrochemical Properties of MoS₂ **Nanocomposites**

Electronic Conductivity and Lithium Diffusion Coefficients at 298 K				
σ (S·cm ⁻¹)	D (cm ² s ⁻¹) x=0.2			
2.1· 10 ⁻⁶	1.4· 10 ⁻¹³			
6.6·10 ⁻³	2.0· 10⁻¹²			
0.085	2.6· 10⁻¹²			
0.251	1.5 ·10 ⁻¹¹			
	ty and Lithium nts at 298 K σ (S·cm ⁻¹) 2.1· 10 ⁻⁶ 6.6· 10 ⁻³ 0.085 0.251			

Solid State Ionics, 85,225 (1996) J.Phys Chem Solids, 58, 1457 (1997) Electrochim. Acta 2006.

Instable Semiconductor Layered Structures (e.g. ZnS, CdS) Synthesis Strategies

Commensurate Layered Organic-Inorganic Nanocomposites

"Bulk"

Staichiometry	DRX
Stotemometry	$\Delta a(nm)$
$(\text{ZnO})_1 \text{H}_{0,17} (\text{C}_{14} \text{H}_{27} \text{O}_2)_{0,17} \cdot 0,01 \text{H}_2 \text{O}$	3,94
$(ZnO)_{1}H_{0.36}(C_{16}H_{31}O_{2})_{0.36} \cdot 0,7H_{2}O$	4,69
$(ZnO)_{1}H_{0,91}(C_{18}H_{35}O_{2})_{0,91} \cdot 7,1H_{2}O$	4,90
$(ZnO)_1(OH)_{1,01}(C_3H_{17}NH_3)_{1,01} \cdot 0,02H_2O$	2,35
$(ZnO)_{1}(OH)_{1.07}(C_{10}H_{21}NH_{3})_{1.07} \cdot 0,3H_{2}O$	2,78
$(ZnO)_{1}(OH)_{1.05}(C_{12}H_{25}NH_{3})_{1.05} \cdot 0,22H_{2}O$	2,74
$(ZnO)_1(OH)_{1,25}(C_{18}H_{37}NH_3)_{1,25} \cdot 0,06H_2O$	4,13
$(ZnO)_{1}H_{0,21}(C_{16}H_{33}SO_{3})_{0,21} \cdot 0,05H_{2}O$	4,70

2n0_AC_07_S_UK (SE) 23-Apr-2007 10kV 13.000× bar=1pm

Confinement Effects Band Gap Regulation

Photocatalytic Activity

Single Layers and Thin Films

ZnO – Carboxilic Acid Nanocomposites

TiO₂-Based Single Layer Semiconductors

TiO₂-Amine nanocomposites

VANADIUM OXIDE NANOTUBES

Spahr, M. E.; Bitterli, P.; Nesper, R.; Mu[°]ller, M.; Krumeich, F.; Nissen, H.-U. *Angew. Chem., Int. Ed. Engl.* **1998**, *37*, 1263. Nesper, R.; Muhr, H.-J. *Chimia* **1998**, *52*, 571.

VO_x NANOTUBES Three Dimensional Arrangements

Layered mixed-valence oxide $BaV_7O_{16} \cdot nH_2O$

Wang et al 1989, Chem. Commun., 1009

 $V_7 O_{16}^{2-}$

Vanadium Oxide Micro-Squares (NH₄)₂V₇O₁₆

Some conclusions

Formation of graphene-like structures is a relevant approach for the stabilization of nanostructured inorganic semiconductors.

Layered semiconductors maintain in a great extend the electronic properties of their corresponding parent compounds

Vanadium oxide micro-squares open a new window for designing new template free layered products

Thank you for your attention !!!