

Royal Institute of Technology

Surface Engineered Nanofibers Composites for water Treatment

Research Activities Within EULA-NETCERMAT Project

Abdusalam Uheida

Functional Materials Division KTH - Royal Institute of Technology, Sweden Criciuma-Brazil, November 2013

KTH Involvement in WPs

<u>WP1</u>

SYNTHESIS AND CHARACTERIZATION OF ADVANCED CERAMICS

Task 1.1.5Design of nanostructure materials (nanoceramics)
and conducting comprehensive characterization of
the fabricated nanomaterials.

Task 1.1.6Exploit the applications of the fabricated
Nanoceramics material in environment clean-
up (water remediation).

Nano-Environment Group at FNM

Environnental

Design Synthesis Processing Characterization

Nanostructured Materials

Develop Methodology Tailoring Properties to Specific Applications

Potential Applications

Contaminated Soil Clean-up

Water treatment

- Industrial effluents treatment
- Drinking water purifications

Proposed Technology Outputs

- Clean-up waste streams and produce environmentally friendly effluents (e.g., no generation of secondary waste).
- Recovery of toxic components.
- Conversion of the separated waste to products that can be reused which can generate income for the industry.

Targeted Pollutants

Inorganic contaminates

Co : contaminated coolant water system in the nuclear power plants
As: underground water contamination
Cr: tanning and lather industries
Pb, Cu, Zn: contaminated mining sites

Organic contaminates

Pesticides: Agriculture industry **Organic dyes- Indigo Carmine**: Textile industry **Pharmaceutical drug**: Sewage Treatment Plants (Antitumor antibiotics , Non-steroidal antiinflammatory drugs, Antidepressant)

Targeted Pollutants

Recovery of High Valuable Metals

Rear Earths Elements-REE: Nd (magnetics), Gd (MRI contrast agent), Eu (electronics)

Platinum Group Metals (PGM): Car catalyst-Pd, Pt, Rh

Nano-Adsorbents

Non-Selective adsorption

SPION Fe_3O_4 , γ -Fe₂O₃

Nano-Adsorbents

Selective Adsorption

TEM image

Surface modified SPION

Nano-Adsorbents

Selective Adsorption

TEM image

Surface modified SPION

Photo catalytic

ZnO Nanorods

Nanofibers Composites

PAN-Fe3O4 NPs

PLLA-SPION

Pilot Plants Implications

Implementation of composite nanomaterials in pilot plant (Morocco and Tunisia under SOWAEUMED project).

Pilot Plants Implications

Cr(VI) removal from Tanning industry wastewater

Indigo Carmine removal from textile industry wastewater

Mobility within EU-LA Project

Raul Ariel Procaccini Del Valle INTEMA

- WHO limit: 0.01 ppm
- Argentina:
 - 0.1 to 0.8 ppm
 - 7 to 10% country population: mainly farm and native
- Source: geological and mining
- No government policies for cleaning out
- No investments for water remediation

Arsenic as pollutant

- the most common mobile species in *water*, soil, and sediment.
- As(III) and As(V): introduced into the environment from natural sources
 (e.g., volcanic activity and weathering of minerals) and from anthropogenic
 activity (e.g., ore smelting, burning of coal, degradation of organo-arsenic
 pesticides).
- Highly toxic to organisms, including humans.
- Arsenite, being more water-soluble than arsenate, is more mobile and more available to organisms.

Mobility within EU-LA Project

The aim is to develop a process based on nanofibers composites for As(III, V) removal

Nanocomposites Design

- Synthesis of nanofibers by electro-spinning
- Nanofibers functionalization (-NH₂, -COOH, etc)

 Synthesis of surface modified Nanomaterials (Fe₃O₄, Silica)-(-NH₂, -COOH, -SH)

Fabrication of Nanofibers

- Poly acrylonitrile 10wt% in DMF (PAN/DMF)
- Electro-spinning: 1 mL h⁻¹; 10 kV, 10 cm
- Drying: 60°C in vacuum

Characterization of NH₂-PAN

FTIR and Conversion Number (Cn)

Cross-linking process

+

EDC

N=C=N

Fe O

NH₂ C=N-OH $C \equiv N$ $- CH_2 - CH_2 + NH_2OH \cdot HCl + Na_2CO_3 \xrightarrow{70 \circ C} - CH_2 - CH_2$ N-OH Glutaraldehyde **Crosslinking medium** NHS H,N 00000 Fe₃O₄ NH, Fe₃O₄ HN.

Functionalized PAN nanofibers

Characterization of NCs

- □ Nitrile: 2260 cm⁻¹
- Amino features:
- -N-H: 3360 and 3286 $cm^{\text{-1}}$
- -N-O: ~920 cm⁻¹
- □ Silica features:
- -Si-O-Si: 1086 and 800 $cm^{\text{-}1}$

• SEM

• FTIR

Adsorption tests for As (V)

NH2-PAN/Fe3O4-SH

NH2-PAN/SiO2-NH2

Planned Activities

- Mechanistic Studies of the adsorption of As(V) and As(III)
- Adsorption studies of As(V) and As(III) onto nanofibers composites using column operation mode

• Fabrication of nanofibrous mats of polymer–oxide composite which are converted to pure oxide nanofibers by calcination

